Wis. Admin. Code Department of Natural Resources NR 440.58

Current through December 30, 2024
Section NR 440.58 - Metal coil surface coating
(1) APPLICABILITY AND DESIGNATION OF AFFECTED FACILITY.
(a) The provisions of this section apply to the following affected facilities in a metal coil surface coating operation: each prime coat operation, each finish coat operation, and each prime and finish coat operation combined when the finish coat is applied wet on wet over the prime coat and both coatings are cured simultaneously.
(b) Any facility under par. (a) that commences construction, modification or reconstruction after January 5, 1981, is subject to the requirements of this section.
(2) DEFINITIONS AND SYMBOLS.
(a) As used in this section, terms not defined in this paragraph have the meanings given in s. NR 440.02.
1. "Coating" means any organic material that is applied to the surface of metal coil.
2. "Coating application station" means that portion of the metal coil surface coating operation where the coating is applied to the surface of the metal coil. Included as part of the coating application stations is the flashoff area between the coating application station and the curing oven.
3. "Curing oven" means the device that uses heat or radiation to dry or cure the coating applied to the metal coil.
4. "Finish coat operation" means the coating application station, curing oven and quench station used to apply and dry or cure the final coating or coatings on the surface of the metal coil. Where only a single coating is applied to the metal coil, that coating is considered a finish coat.
5. "Metal coil surface coating operation" means the application system used to apply an organic coating to the surface of any continuous metal strip with thickness of 0.15 millimeter (mm) (0.006 in) or more that is packaged in a roll or coil.
6. "Prime coat operation" means the coating application station, curing oven and quench station used to apply and dry or cure the initial coating or coatings on the surface of the metal coil.
7. "Quench station" means that portion of the metal coil surface coating operation where the coated metal coil is cooled, usually by a water spray, after baking or curing.
8. "VOC content" means the quantity, in kilograms per liter of coating solids, of volatile organic compounds (VOCs) in a coating.
(b) As used in this section, symbols not defined in this paragraph have the meanings given in s. NR 440.03.
1. Ca is the VOC concentration in each gas stream leaving the control device and entering the atmosphere (parts per million by volume, as carbon).
2. Cb is the VOC concentration on each gas stream entering the control device (parts per million by volume, as carbon).
3. Cf is the VOC concentration in each gas stream emitted directly to the atmosphere (parts per million by volume, as carbon).
4. Dc is the density of each coating, as received (kilograms per liter).
5. Dd is the density of each VOC solvent added to coatings (kilograms per liter).
6. Dr is the density of VOC solvent recovered by an emission control device (kilograms per liter).
7. E is the VOC destruction efficiency of the control device (fraction).
8. F is the proportion of total VOCs emitted by an affected facility that enters the control device (fraction).
9. G is the volume-weighted average mass of VOCs in coatings consumed in a calendar month per unit volume of coating solids applied (kilograms per liter).
10. Lc is the volume of each coating consumed, as received (liters).
11. Ld is the volume of each VOC solvent added to coatings (liters).
12. Lr is the volume of VOC solvent recovered by an emission control device (liters).
13. Ls is the volume of coating solids consumed (liters).
14. Md is the mass of VOC solvent added to coatings (kilograms).
15. Mo is the mass of VOCs in coatings consumed, as received (kilograms).
16. Mr is the mass of VOCs recovered by an emission control device (kilograms).
17. N is the volume-weighted average mass of VOC emissions to the atmosphere per unit volume of coating solids applied (kilograms per liter).
18. Qa is the volumetric flow rate of each gas stream leaving the control device and entering the atmosphere (dry standard cubic meters per hour).
19. Qb is the volumetric flow rate of each gas stream entering the control device (dry standard cubic meters per hour).
20. Qf is the volumetric flow rate of each gas stream emitted directly to the atmosphere (dry standard cubic meters per hour).
21. R is the overall VOC emission reduction achieved for an affected facility (fraction).
22. S is the calculated monthly allowable emission limit (kilograms of VOC per liter of coating solids applied).
23. Vs is the proportion of solids in each coating as received (fraction by volume).
24. Wo is the proportion of VOCs in each coating, as received (fraction by weight).
(3) STANDARDS FOR VOLATILE ORGANIC COMPOUNDS.
(a) On and after the date on which s. NR 440.08 requires a performance test to be completed, each owner or operator subject to this section may not cause to be discharged into the atmosphere more than:
1. 0.28 kilogram VOC per liter (kg VOC/l) of coating solids applied for each calendar month for each affected facility that does not use an emission control device; or
2. 0.14 kg VOC/l of coating solids applied for each calendar month for each affected facility that continuously uses an emission control device operated at the most recently demonstrated overall efficiency; or
3. 10% of the VOCs applied for each calendar month (90% emission reduction) for each affected facility that continuously uses an emission control device operated at the most recently demonstrated overall efficiency; or
4. A value between 0.14 (or a 90% emission reduction) and 0.28 kg/VOC/l of coating solids applied for each calendar month for each affected facility that intermittently uses an emission control device operated at the most recently demonstrated overall efficiency.
(4) PERFORMANCE TEST AND COMPLIANCE PROVISIONS.
(a) Section NR 440.08(4) and (6) does not apply to the performance test.
(b) The owner or operator of an affected facility shall conduct an initial performance test as required under s. NR 440.08(1) and thereafter a performance test for each calendar month for each affected facility according to the procedures in this subsection.
(c) The owner or operator shall use the following procedures for determining monthly volume-weighted average emissions of VOCs in kg/l of coating solids applied.
1. An owner or operator shall use the following procedures for each affected facility that does not use a capture system and control device to comply with the emission limit specified under sub. (3) (a) 1. The owner or operator shall determine the composition of the coatings by formulation data supplied by the manufacturer of the coating or by an analysis of each coating, as received, using Method 24 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17(1). The department may require the owner or operator who uses formulation data supplied by the manufacturer of the coatings to determine the VOC content of coatings using Method 24 or an equivalent or alternative method. The owner or operator shall determine the volume of coating and the mass of VOC solvent added to coatings from company records on a monthly basis. If a common coating distribution system serves more than one affected facility or serves both affected and existing facilities, the owner or operator shall estimate the volume of coating used at each affected facility by using the average dry weight of coating and the surface area coated by each affected and existing facility or by other procedures acceptable to the department.
a. Calculate the volume-weighted average of the total mass of VOCs consumed per unit volume of coating solids applied during each calendar month for each affected facility, except as provided under subd. 1. d. The weighted average of the total mass of VOCs used per unit volume of coating solids applied each calendar month shall be determined by the following procedures.
1) Calculate the mass of VOCs used (Mo+ Md) during each calendar month for each affected facility by the following equation:

See PDF for diagram

) (S) Ldj Ddj will be zero if no VOC solvent is added to the coatings, as received.)

where:

n is the number of different coatings used during the calendar month

m is the number of different VOC solvents added to coatings used during the calendar month

2) Calculate the total volume of coating solids used (Ls) in each calendar month for each affected facility by the following equation:

See PDF for diagram

where:

n is the number of different coatings used during the calendar month

3) Calculate the volume-weighted average mass of VOCs used per unit volume of coating solids applied (G) during the calendar month for each affected facility by the following equation:

See PDF for diagram

b. Calculate the volume-weighted average of VOC emissions to the atmosphere (N) during the calendar month for each affected facility by the following equation:

N=G

c. Where the volume-weighted average mass of VOCs discharged to the atmosphere per unit volume of coating solids applied (N) is equal to or less than 0.28 kg/l, the affected facility is in compliance.
d. If each individual coating used by an affected facility has a VOC content, as received, that is equal to or less than 0.28 kg/l of coating solids, the affected facility is in compliance provided no VOCs are added to the coatings during distribution or application.
2. An owner or operator shall use the following procedures for each affected facility that continuously uses a capture system and a control device that destroys VOCs (e.g., incinerator) to comply with the emission limit specified under sub. (3) (a) 2. or 3.
a. Determine the overall reduction efficiency (R) for the capture system and control device. For the initial performance test, the overall reduction efficiency (R) shall be determined as prescribed in this subparagraph. In subsequent months, the owner or operator may use the most recently determined overall reduction efficiency (R) for the performance test, providing control device and capture system operating conditions have not changed. The procedure in this paragraph shall be repeated when requested by the department or when the owner or operator elects to operate the control device or capture system at conditions different from the initial performance test.
1) Determine the fraction (F) of total VOCs emitted by an affected facility that enters the control device using the following equation:

See PDF for diagram

where:

l is the number of gas streams entering the control device

p is the number of gas streams emitted directly to the atmosphere

2) Determine the destruction efficiency of the control device (E) using values of the volumetric flow rate of each of the gas streams and the VOC content (as carbon) of each of the gas streams in and out of the device by the following equation:

See PDF for diagram

where:

n is the number of gas streams entering the control device

m is the number of gas streams leaving the control device and entering the atmosphere

The owner or operator of the affected facility shall construct the VOC emission reduction system so that all volumetric flow rates and total VOC emissions can be accurately determined by the applicable test methods and procedures specified in sub. (7). The owner or operator of the affected facility shall construct a temporary enclosure around the coating applicator and flashoff area during the performance test for the purpose of evaluating the capture efficiency of the system. The enclosure shall be maintained at a negative pressure to ensure that all VOC emissions are measurable. If a permanent enclosure exists in the affected facility prior to the performance test and the department is satisfied that the enclosure is adequately containing VOC emissions, no additional enclosure is required for the performance test.

3) Determine overall reduction efficiency (R) using the following equation:

R = EF

If the overall reduction efficiency (R) is equal to or greater than 0.90, the affected facility is in compliance and no further computations are necessary. If the overall reduction efficiency (R) is less than 0.90, the average total VOC emissions to the atmosphere per unit volume of coating solids applied (N) shall be computed as specified in subd. 2. b., c. and d.

b. Calculate the volume-weighted average of the total mass of VOCs per unit volume of coating solids applied (G) during each calendar month for each affected facility using equations in subd. 1. a. 1), 2), and 3).
c. Calculate the volume-weighted average of VOC emissions to the atmosphere (N) during each calendar month by the following equation:

N = G (1 - R)

d. If the volume-weighted average mass of VOCs emitted to the atmosphere for each calendar month (N) is less than or equal to 0.14 kg/l of coating solids applied, the affected facility is in compliance. Each monthly calculation is a performance test.
3. An owner or operator shall use the following procedure for each affected facility that uses a control device that recovers the VOCs (e.g., carbon adsorber) to comply with the applicable emission limit specified under sub. (3) (a) 2. or 3.
a. Calculate the total mass of VOCs consumed (Mo + Md) during each calendar month for each affected facility using the equation in subd. 1. a. 1).
b. Calculate the total mass of VOCs recovered (Mr) during each calendar month using the following equation:

Mr = LrDr

c. Calculate the overall reduction efficiency of the control device (R) for each calendar month for each affected facility using the following equation:

See PDF for diagram

If the overall reduction efficiency (R) is equal to or greater than 0.90, the affected facility is in compliance and no further computation are necessary. If the overall reduction efficiency (R) is less than 0.90, the average total VOC emissions to the atmosphere per unit volume of coating solids applied (N) must be computed as described in subd. 3. d., e. and f.

d. Calculate the total volume of coating solids consumed (Ls) and the volume-weighted average of the total mass of VOCs per unit volume of coating solids applied (G) during each calendar month for each affected facility using equations in subd. 1. a. 2) and 3).
e. Calculate the volume-weighted average mass of VOCs emitted to the atmosphere (N) for each calendar month for each affected facility using the equation in subd. 2. c.
f. If the weighted average mass of VOCs emitted to the atmosphere for each calendar month (N) is less than or equal to 0.14 kg/l of coating solids applied, the affected facility is in compliance. Each monthly calculation i s a performance test.
4. An owner or operator shall use the following procedures for each affected facility that intermittently uses a capture system and a control device to comply with the emission limit specified in sub. (3) (a) 4.:
a. Calculate the total volume of coating solids applied without the control device in operation (Lsn) during each calendar month for each affected facility using the following equation:

See PDF for diagram

where:

n is the number of coatings used during the calendar month without the control device in operation

b. Calculate the total volume of coating solids applied with the control device in operation (Lsc) during each calendar month for each affected facility using the following equation:

See PDF for diagram

where:

m is the number of coatings used during the calendar month with the control device in operation

c. Calculate the mass of VOCs used without the control device in operation (Mon + Mdn) during each calendar month for each affected facility using the following equation:

See PDF for diagram

where:

n is the number of different coatings used without the control device in operation during the calendar month

m is the number of different VOC solvents added to coatings used without the control device in operation during the calendar month

d. Calculate the volume-weighted average of the total mass of VOCs consumed per unit volume of coating solids applied without the control device in operation (Gn) during each calendar month for each affected facility using the following equation:

See PDF for diagram

e. Calculate the mass of VOCs used with the control device in operation (Moc + Mdc) during each calendar month for each affected facility using the following equation:

See PDF for diagram

where:

n is the number of different coatings used with the control device in operation during the calendar month

m is the number of different VOC-solvents added to coatings used with the control device in operation during the calendar month

f. Calculate the volume-weighted average of the total mass of VOCs used per unit volume of coating solids applied with the control device in operation (Gc) during each calendar month for each affected facility using the following equation:

See PDF for diagram

g. Determine the overall reduction efficiency (R) for the capture system and control device using the procedures in subd. 2. a. 1), 2) and 3) or subd. 3. a., b. and c., whichever is applicable.
h. Calculate the volume-weighted average of VOC emissions to the atmosphere (N) during each calendar month for each affected facility using the following equation:

See PDF for diagram

i. Calculate the emission limit or limits for each calendar month for each affected facility using the following equation:

See PDF for diagram

whichever is greater.

j. If the volume-weighted average mass of VOCs emitted to the atmosphere for each calendar month (N) is less than or equal to the calculated emission limit (S) for the calendar month, the affected facility is in compliance. Each monthly calculation is a performance test.
(5) MONITORING OF EMISSIONS AND OPERATIONS.
(a) Where compliance with the numerical limit specified in sub. (3) (a) 1. or 2. is achieved through the use of low VOC-content coatings without the use of emission control devices or through the use of higher VOC-content coatings in conjunction with emission control devices, the owner or operator shall compute and record the average VOC content of coatings applied during each calendar month for each affected facility according to the equations provided in sub. (4).
(b) Where compliance with the limit specified in sub. (3) (a) 4. is achieved through the intermittent use of emission control devices, the owner or operator shall compute and record for each affected facility the average VOC content of coatings applied during each calendar month according to the equations provided in sub. (4).
(c) If thermal incineration is used, each owner or operator subject to the provisions of this section shall install, calibrate, operate and maintain a device that continuously records the combustion temperature of any effluent gases incinerated to achieve compliance with sub. (3) (a) 2., 3. or 4. This device shall have an accuracy of " 2.5°C or " 0.75% of the temperature being measured expressed in degrees Celsius, whichever is greater. Each owner or operator shall also record all periods (during actual coating operations) in excess of 3 hours during which the average temperature in any thermal incinerator used to control emissions from an affected facility remains more than 28°C (50°F) below the temperature at which compliance with sub. (3) (a) 2., 3. or 4. was demonstrated during the most recent measurement of incinerator efficiency required by s. NR 440.08. The records required by s. NR 440.07 shall identify each such occurrence and its duration. If catalytic incineration is used, the owner or operator shall install, calibrate, operate and maintain a device to monitor and record continuously the gas temperature both upstream and downstream of the incinerator catalyst bed. This device shall have an accuracy of " 2.5°C or " 0.75% of the temperature being measured expressed in degrees Celsius, whichever is greater. During coating operations, the owner or operator shall record all periods in excess of 3 hours where the average difference between the temperature upstream and downstream of the incinerator catalyst bed remains below 80% of the temperature difference at which compliance was demonstrated during the most recent measurement of incinerator efficiency or when the inlet temperature falls more than 28°C (50°F) below the temperature at which compliance with sub. (3) (a) 2., 3. or 4. was demonstrated during the most recent measurement of incinerator efficiency required by s. NR 440.08. The records required by s. NR 440.07 shall identify each such occurrence and its duration.
(6) REPORTING AND RECORDKEEPING REQUIREMENTS.
(a) Where compliance with the numerical limit specified in sub. (3) (a) 1., 2. or 4. is achieved through the use of low VOC-content coatings without emission control devices or through the use of higher VOC-content coatings in conjunction with emission control devices, each owner or operator subject to the provisions of this section shall include in the initial compliance report required by s. NR 440.08 the weighted average of the VOC content of coatings used during a period of one calendar month for each affected facility. Where compliance with sub. (3) (a) 4. is achieved through the intermittent use of a control device, reports shall include separate values of the weighted average VOC content of coatings used with and without the control device in operation.
(b) Where compliance with sub. (3) (a) 2., 3. or 4. is achieved through the use of an emission control device that destroys VOCs, each owner or operator subject to the provisions of this section shall include the following data in the initial compliance report required by s. NR 440.08:
1. The overall VOC destruction rate used to attain compliance with sub. (3) (a) 2., 3. or 4. and the calculated emission limit used to attain compliance with sub. (3) (a) 4.; and
2. The combustion temperature of the thermal incinerator or the gas temperature, both upstream and downstream of the incinerator catalyst bed, used to attain compliance with sub. (3) (a) 2., 3. or 4.
(c) Following the initial performance test, the owner or operator of an affected facility shall identify, record and submit a written report to the department every calendar quarter of each instance in which the volume-weighted average of the local mass of VOCs emitted to the atmosphere per volume of applied coating solids (N) is greater than the limit specified under sub. (3). If no instances have occurred during a particular quarter, a report stating this shall be submitted to the department semiannually.
(d) The owner or operator of each affected facility shall also submit reports at the frequency specified in s. NR 440.07(3) when the incinerator temperature drops as defined under sub. (5) (c). If no periods occur, the owner or operator shall state this in the report.
(e) Each owner or operator subject to the provisions of this section shall maintain at the source for a period of at least 2 years, records of all data and calculations used to determine monthly VOC emissions from each affected facility and to determine the monthly emission limit where applicable. Where compliance is achieved through the use of thermal incineration, each owner or operator shall maintain, at the source, daily records of the incinerator combustion temperature. If catalytic incineration is used, the owner or operator shall maintain at the source daily records of the gas temperature, both upstream and downstream of the incinerator catalyst bed.
(7) TEST METHODS AND PROCEDURES.
(a) The reference methods in 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17, except as provided under s. NR 440.08(2), shall be used to determine compliance with sub. (3) as follows:
1. Method 24, or data provided by the formulator of the coating, shall be used for determining the VOC content of each coating as applied to the surface of the metal coil. In the event of a dispute, Method 24 shall be the reference method. When VOC content of waterborne coatings, determined by Method 24, is used to determine compliance of affected facilities, the results of the Method 24 analysis shall be adjusted as described in sectio n 12.6 of Method 24.
2. Method 25, both for measuring the VOC concentration in each gas stream entering and leaving the control device on each stack equipped with an emission control device and for measuring the VOC concentration in each gas stream emitted directly to the atmosphere.
3. Method 1 for sample and velocity traverses.
4. Method 2 for velocity and volumetric flow rate.
5. Method 3 for gas analysis.
6. Method 4 for stack gas moisture.
(b) For Method 24 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17, the coating sample shall be at least a one-liter sample taken at a point where the sample will be representative of the coating as applied to the surface of the metal coil.
(c) For Method 25 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17(1), the sampling time shall be at least 60 minutes, and the minimum sample volume shall be at least 0.003 dscm (0.11 dscf); however, shorter sampling times or smaller volumes, when necessitated by process variables or other factors, may be approved by the department.
(d) The department shall approve testing of representative stacks on a case-by-case basis if the owner or operator can demonstrate to the satisfaction of the department that testing of representative stacks yields results comparable to those that would be obtained by testing all stacks.

Wis. Admin. Code Department of Natural Resources NR 440.58

Cr. Register, January, 1984, No. 337, eff. 2-1-84; am. (2) (a) (intro.), (b) (intro.) and (4) (c) 2. a. 2), Register, September, 1990, No. 417, eff. 10-1-90; renum. (6) (c) to be (6) (e), cr. (6) (c) and (d), Register, June, 1993, No. 450, eff. 8-1-93; CR 06-109: am. (2) (b) 1. to 24., (4) (c) 1. (intro.) and (7) (a) 1. to 5. and (c) Register May 2008 No. 629, eff. 6-1-08.