19 Del. Admin. Code § 1342-D-4.0

Current through Register Vol. 27, No. 12, June 1, 2024
Section 1342-D-4.0 - Follow-Up Diagnostic Imaging and Testing Procedures

One diagnostic imaging procedure may provide the same or distinctive information as does another procedure. Therefore, the prudent choice of a single diagnostic procedure, a complement of procedures or a sequence of procedures will optimize diagnostic accuracy; maximize cost effectiveness (by avoiding redundancy), and minimize potential adverse effects to patients.

All imaging procedures have a degree of specificity and sensitivity for various diagnoses. No isolated imaging test can assure a correct diagnosis. Clinical information obtained by history taking and physical examination should form the basis for selecting an imaging procedure and interpreting its results.

Magnetic resonance imaging (MRI), myelography, or Computed Axial Tomography (CT) scanning following myelography may provide useful information for many spinal disorders. When a diagnostic procedure, in conjunction with clinical information, can provide sufficient information to establish an accurate diagnosis, the second diagnostic procedure will become a redundant procedure. At the same time, a subsequent diagnostic procedure can be a complementary diagnostic procedure if the first or preceding procedures, in conjunction with clinical information, cannot provide an accurate diagnosis. Usually, preference of a procedure over others depends upon availability, a patient's tolerance, and/or the treating practitioner's familiarity with the procedure.

4.1 IMAGING STUDIES are generally accepted, well-established and widely used diagnostic procedures. In the absence of myelopathy, or progressive neurological changes, or neurologic deficit, or history of cancer, imaging usually is not appropriate until conservative therapy has been tried and failed. Four to six weeks of treatment are usually an adequate period of time before an imaging procedure is in order, but the clinician should use judgment in this regard. When indicated, imaging studies can be utilized for further evaluation of the low back, based upon the mechanism of injury, symptoms, and patient history. Prudent choice of a single diagnostic procedure, a complementary combination of procedures, or a proper sequential order of complementary procedures will help ensure maximum diagnostic accuracy and minimize adverse effect to the patient. When the findings of the diagnostic imaging and testing procedures are not consistent with the clinical examination, the clinical findings should have preference.

The studies below are listed in frequency of use, not importance:

4.1.1 Magnetic Resonance Imaging (MRI): is rarely indicated in patients with non-traumatic acute low back pain with no neuropathic signs or symptoms. It is generally the first follow-up imaging study in individuals who respond poorly to proper initial conservative care. MRI is useful in suspected nerve root compression, myelopathy, masses, infections, metastatic disease, disc herniation, annular tear, and cord contusion. MRI is contraindicated in patients with certain implants.

In general, the high field, conventional, MRI provides better resolution. A lower field scan may be indicated when a patient cannot fit into a high field scanner or who is too claustrophobic despite sedation. Inadequate resolution on the first scan may require a second MRI using a different technique.

4.1.2 Computed Axial Tomography (CT) provides excellent visualization of bone and is used to further evaluate bony masses and suspected fractures and joints not clearly identified on radiographic evaluation. It may sometimes be done as a complement to MRI scanning to better delineate bony osteophyte formation in the neural foramen. Instrument-scatter reduction software provides better resolution when metallic artifact is of concern.
4.1.3 Myelography is the injection of radiopaque material into the spinal subarachnoid space, with x-rays then taken to define anatomy. It may be used as a pre-surgical diagnostic procedure to obtain accurate information of characteristics, location, and spatial relationships among soft tissue and bony structures. The use of small needles and a less toxic, water-soluble, nonionic contrast is recommended.
4.1.4 CT Myelogram provides more detailed information about relationships between neural elements and surrounding anatomy.
4.1.5 Lineal Tomography is infrequently used, yet may be helpful in the evaluation of bone surfaces, bony fusion, or pseudoarthrosis.
4.1.6 Bone Scan (Radioisotope Bone Scanning) is generally accepted, well established, and widely used. Bone scanning is more sensitive but less specific than MRI. 99mTechnetium diphosphonate uptake reflects osteoblastic activity and may be useful in diagnosing metastatic/primary bone tumors, stress fractures, osteomyelitis, and inflammatory lesions, but cannot distinguish between these entities.
4.1.7 Other Radioisotope Scanning: Indium and gallium scans are generally accepted, well-established, and widely used procedures usually to help diagnose lesions seen on other diagnostic imaging studies. 67Gallium citrate scans are used to localize tumor, infection, and abscesses. 111Indium-labeled leukocyte scanning is utilized for localizing infection or inflammation.
4.1.8 Dynamic [Digital] Fluoroscopy: Dynamic [Digital] Fluoroscopy of the lumbar spine measures the motion of intervertebral segments using a videofluoroscopy unit to capture images as the subject performs lumbar flexion and extension, storing the anatomic motion of the spine in a computer. Currently it is not recommended for use in the diagnosis of lumbar instability, since there is limited information on normal segmental motion for the age groups commonly presenting with low back pain, and diagnostic criteria for specific spinal conditions are not yet defined. No studies have yet demonstrated predictive value in terms of standard operative and non-operative therapeutic outcomes.
4.2 OTHER TESTS The following diagnostic procedures in this subsection are listed in alphabetical order, not by importance:
4.2.1 Electrodiagnostic Testing:
4.2.1.1 Electromyography (EMG), Nerve Conduction Studies (NCS) These are generally accepted, well-established and widely used diagnostic procedures. EMG and NCS, when performed and interpreted by a trained physician/electrophysiologist, may be useful for patients with suspected neural involvement whose symptoms are persistent or unresponsive to initial conservative treatments. They are used to differentiate peripheral neural deficits from radicular and spinal cord neural deficits and to rule out concomitant myopathy. However, F-Wave Latencies are not diagnostic for radiculopathy.

In general, EMG and NCS are complementary to imaging procedures such as CT, MRI, and/or myelography or diagnostic injection procedures. Electrodiagnostic studies may provide useful, correlative neuropathophysiological information that would be otherwise unobtainable from the radiologic studies discussed above.

4.2.1.2 Portable Automated Electrodiagnostic Device (also known as Surface EMG) is not a substitute for conventional diagnostic testing in clinical decision-making, and therefore, is not recommended.
4.2.1.3 Somatosensory Evoked Potential (SSEP) is not recommended to identify radiculopathy. It may be used to evaluate myelopathy and other rare neurological disorders such as neurogenic bladder and sexual dysfunction.
4.2.1.4 Current Perception Threshold (CPT) Evaluation may be useful as a screening tool, but its diagnostic efficacy in the evaluation of industrial low back pain has not been determined. Therefore, CPT is not recommended as a diagnostic tool.
4.2.1.5 Large Array Surface Electromyography measures low back muscle activity using a fixed array of 63 electrodes arranged in 9 rows and 7 columns between the seventh thoracic spinous process and the iliac crest. The array simultaneously collects myoelectric data from multifidus, iliocostalis, quadratus lumborum, and other lumbar muscles, which is analyzed for patterns of activity in these muscle groups. It is used in researching physiologic changes and adaptations to back pain, but is not recommended as a diagnostic procedure for individuals with back pain due to a lack of interpretive standards.
4.2.1.6 Surface EMG in combination with Range of Motion and/or Functional Capacity Evaluation

This is designed to detect differences between persons with and without low back pain, measuring signals in lumbar flexion which show that painful paraspinal muscles fail to relax fully. It may show aspects of the pathophysiology of muscle activity which advance the scientific understanding of low back pain. The test also purports to determine the significance of disc pathology and the age of an injury. It has not been evaluated in a setting which tests a spectrum of patients commonly seen in clinical practice, using an interpretation which is tested against a diagnostic reference standard. Therefore, it is not suitable as a diagnostic test for low back pain and its use for this purpose is not recommended.

4.2.2 Injections - Diagnostic
4.2.2.1 Description - Diagnostic spinal injections are generally accepted, well-established procedures. These injections may be useful for localizing the source of pain, and may have added therapeutic value when combined with injection of therapeutic medication(s).
4.2.2.2 Indications - Since these procedures are invasive, less invasive or non-invasive procedures should be considered first. Selection of patients, choice of procedure, and localization of the level for injection should be determined by clinical information.
4.2.2.3 The interpretation of the test results are primarily based on functional change, symptom report, and pain response (via a recognized pain scale), before and at an appropriate time period after the injection. The diagnostic significance of the test result should be evaluated in conjunction with clinical information and the results of other diagnostic procedures. Injections with local anesthetics of differing duration may be used to support a diagnosis. In some cases, injections at multiple levels may be required to accurately diagnose low back pain.

Multiple injections provided at the same session without staging may seriously dilute the diagnostic value of these procedures. Practitioners must carefully weigh the diagnostic value of the procedure against the possible therapeutic value.

4.2.2.4 Special Requirements for Diagnostic Injections Since multi-planar fluoroscopy during procedures is required to document technique and needle placement, an experienced physician should perform the procedure. Permanent images are required to verify needle placement. The subspecialty disciplines of the physicians performing the injections may be varied, including, but not limited to: anesthesiology, radiology, surgery, or physiatry. The practitioner should document hands-on training through workshops of the type offered by organizations such as the International Spine Intervention Society (ISIS) and/or completed fellowship training with interventional training. They must also be knowledgeable in radiation safety.
4.2.2.5 Specific Diagnostic Injections In general, relief should last for at least the duration of the local anesthetic used and should significantly relieve pain and result in functional improvement. Refer to "Injections - Therapeutic" for information on specific therapeutic injections.
4.2.2.5.1 Medial Branch Blocks are generally accepted diagnostic injections, used to determine whether a patient is a candidate for radiofrequency medial branch neurotomy (also known as facet rhizotomy). To be a positive diagnostic block, the patient should report a reduction of pain of 50% or greater relief from baseline or the length of time appropriate for the local anesthetic used. A separate comparative block on a different date may be performed to confirm the level of involvement. A comparative block uses anesthetics of varying lengths of activity.

Frequency and Maximum Duration: May be repeated once for comparative blocks. Limited to 4 levels

4.2.2.5.2 Transforaminal injections are generally accepted and useful in identifying spinal pathology. When performed for diagnosis, small amounts of local anesthetic up to a total volume of 1.0 cc should be used to determine the level of nerve root irritation. A positive diagnostic block should result in a positive diagnostic functional benefit and an 50% reduction in nerve-root generated pain appropriate for the anesthetic used as measured by accepted pain scales (such as a VAS).

Frequency and Maximum Duration: Once per suspected level. Limited to three levels. May be repeated once for confirmation.

4.2.2.5.3 Zygapophyseal (Facet) Blocks:

Facet blocks are generally accepted. They may be used diagnostically to direct functional rehabilitation programs. A positive diagnostic block should result in a positive diagnostic functional benefit and an 50% reduction in pain appropriate for the anesthetic used as measured by accepted pain scales (such as a VAS). They then may be repeated per the therapeutic guidelines. Frequency and maximum Duration: Once per suspected level, limited to three levels. May be repeated for confirmation.

4.2.2.5.4 Sacroiliac Joint Injection:
4.2.2.5.4.1 Description - A generally accepted Injection of local anesthetic in an intra-articular fashion into the sacroiliac joint under fluoroscopic guidance. Long-term therapeutic effect has not yet been established.
4.2.2.5.4.2 Indications - Primarily diagnostic to rule out sacroiliac joint dysfunction versus other pain generators. Intra-articular injection can be of value in diagnosing the pain generator. There should be documented at least 50% pain relief (as measured by accepted pain scales such as a VAS)

Frequency and Maximum Duration:

May be repeated for confirmation.

4.2.3 Provocation Discography:
4.2.3.1 Description - Discography is an accepted diagnostic procedure to identify or refute a discogenic source of pain for patients who are surgical candidates. Discography should only be performed by physicians who are experienced and have been proctored in the technique. It is essential that all indications, pre-conditions, special considerations, procedures, reporting requirements, and results are carefully and specifically followed. Results should be interpreted judiciously.
4.2.3.2 Indications - Discography may be indicated when a patient has a history of functionally limiting, unremitting low back pain of greater than four months duration, with or without leg pain, which has been unresponsive to all conservative interventions. A patient who would not consider operative therapeutic intervention is not a candidate for an invasive non-therapeutic intervention, such as provocation discography.

Discography may prove useful for the evaluation of the pre-surgical spine, such as pseudarthrosis, discogenic pain at levels above or below a prior spinal fusion, annular tear, or internal disc disruption.

Discography may show disc degeneration and annular disruption in the absence of low back pain. Discography may also elicit concordant pain in patients with mild and functionally inconsequential back pain. Because patients with mild back pain should not be considered for invasive treatment, discography should not be performed on these patients. In symptomatic patients with annular tears on discography, the side of the tear does not necessarily correlate with the side on which the symptoms occur. The presence of an annular tear does not necessarily identify the tear as the pain generator.

Discography may have a limited place in the work-up of pseudarthrosis. Discography may prove useful in evaluating the number of lumbar spine levels that might require fusion. CT-Discography provides further detailed information about morphological abnormalities of the disc and possible lateral disc herniations.

4.2.3.3 Pre-conditions for provocation discography include all of the following:
4.2.3.3.1 A patient with functionally limiting, unremitting back and/or leg pain of greater than four months duration in whom conservative treatment has been unsuccessful and in whom the specific diagnosis of the pain generator has not been made apparent on the basis of other noninvasive imaging studies (e.g., MRI, CT, plain films, etc.). It is recommended that discography be reserved for use in patients with equivocal MRI findings, especially at levels adjacent to clearly pathological levels. Discography may be more sensitive than MRI or CT in detecting radial annular tears. However, radial tears must always be correlated with clinical presentation.
4.2.3.3.2 Patients who are considered surgical candidates (e.g., symptoms are of sufficient magnitude and the patient has been informed of the possible surgical options that may be available based upon the results of discography).
4.2.3.3.3 Informed consent regarding the risks and potential diagnostic benefits of discography has been obtained.
4.2.3.4 Special Considerations:
4.2.3.4.1 Discography should not be performed by the physician expected to perform the therapeutic procedure. The procedure should be carried out by an experienced individual who has received specialized training in the technique of provocation discography.
4.2.3.4.2 Discography should be performed in a blinded format that avoids leading the patient with anticipated responses. The procedure should include one or more disc levels thought to be normal or non-painful in order to serve as an internal control. The patient should not know what level is being injected in order to avoid spurious results. Abnormal disc levels may be repeated to confirm concordance.
4.2.3.4.3 Sterile technique must be utilized.
4.2.3.4.4 Judicious use of light sedation during the procedure is acceptable, represents the most common practice nationally at the current time, and is recommended by most experts in the field. The patient must be awake and able to accurately report pain levels during the provocation portion of the procedure.
4.2.3.4.5 The discography should be performed using a manometer to record pressure.
4.2.3.4.6 Intradiscal injection of local anesthetic may be carried out after the provocation portion of the examination and the patient's response.
4.2.3.4.7 It is recommended that a post-discogram CT be considered as it frequently provides additional useful information about disc morphology or other pathology.
4.2.3.5 Reporting of Discography - In addition to a narrative report, the discography report should contain a standardized classification of (a) disc morphology (b) the pain response, and (c) the pressure at which pain is produced. All results should be clearly separated in the report from the narrative portion. Asymptomatic annular tears are common and the concordant pain response is an essential finding for a positive discogram.

When discography is performed to identify the source of a patient's low-back pain, both a concordant pain response and morphological abnormalities must be present at the pathological level prior to initiating any treatment directed at that level. The patient must be awake during the provocation phase of the procedure; therefore, sedative medication must be carefully titrated.

4.2.3.5.1 Reporting disc morphology as visualized by the post-injection CT scan (when available) should follow the Modified Dallas Discogram Scale where:

. Grade 0 = Normal Nucleus

. Grade 1 = Annular tear confined to inner one-third of annulus fibrosis.

. Grade 2 = Annular tear extending to the middle third of the annulus fibrosis.

. Grade 3 = Annular tear extending to the outer one-third of the annulus fibrosis.

. Grade 4 = A grade 3 tear plus dissection within the outer annulus to involve more than 30° of the disc circumference.

. Grade 5 = Full thickness tear with extra-annular leakage of contrast, either focal or diffuse.

4.2.3.5.2 Reporting of pain response should be consistent with the operational criteria of the International Spine Intervention Society (ISIS) Guidelines. The report must include the level of concordance for back pain and leg pain separately using a 10-point VAS, or similar quantitative assessment. It should be noted that change in the VAS scale before and after provocation is more important than the number reported.
4.2.3.5.2.1 Unequivocal Discogenic Pain

. Stimulation of the target disc reproduces concordant pain

. The pain is registered as at least 6 on a 10-point VAS.

. The pain is reproduced at a pressure of less than 15 psi above opening pressure; and

. Stimulation of two adjacent discs does not produce pain at all

4.2.3.5.2.2 Definite Discogenic Pain

. Stimulation of the target disc reproduces concordant pain

. The pain is registered as at least 6 on a 10-point VAS.

. The pain is reproduced at a pressure of less than 15 psi above opening pressure; and

. Stimulation of at least one adjacent disc does not produce pain at all

4.2.3.5.2.3 Highly Probable Discogenic Pain

. Stimulation of the target disc reproduces concordant pain

. That pain is registered as at least 6 on a 10-point VAS.

. That the pain is reproduced at a pressure of less than 50 psi above opening pressure; and

. Stimulation of two adjacent discs does not produce pain at all

4.2.3.5.2.4 Probable Discogenic Pain

. Stimulation of the target disc reproduces concordant pain

. That pain is registered as at least 6 on a 10-point VAS.

. The pain is reproduced at a pressure of less than 50 psi above opening pressure; and

. Stimulation of one adjacent disc does not produce pain at all, and stimulation of another adjacent discs at greater than 50 psi, produces pain, but the pain is not concordant.

Multiple combinations of factors are possible. However, if the patient does not qualify for at least a 'Probable Discogenic Pain' level, then the discogram should probably be considered negative. The VAS score prior to the discogram should be taken into account when interpreting the VAS score reported by the patient during the discogram.

4.2.4 Thermography: is an accepted and established procedure, but has no use as a diagnostic test for low back pain and is not recommended.

19 Del. Admin. Code § 1342-D-4.0